European Society for Spatial Biology (ESSB)

European Society for Spatial Biology

Early bird deadline: 31 July 2024

Abstract deadline: 31 August 2024

Travel grants will be awarded for selected abstracts!

New Developments in Spatial Biology

Chairs: Denis Schapiro, Christian Schürch

Thursday, 12.12.2024, 8:30 am

Joakim Lundeberg

Keynote Speaker: Joakim Lundeberg
SciLifeLab, KTH Royal Institute of Technology

Resolving the tissue ecosystem into its components

Tissue represents an ecosystem of different cells carrying out various tasks. Specific types of cells exist in every organ and serve specialized functions defined by the specific genes and proteins active in each cell type. Comprehensive maps of molecularly defined human cell types are underway through the Human Cell Atlas effort using primarily single-cell RNA sequencing. The technologies to assemble spatial maps that describe and explain the cellular basis of health and disease are still being discussed. We have developed and established the Spatial Transcriptomics technology, in which tissue imaging is merged with spatial RNA sequencing and resolved by computational means. Spatial Transcriptomics technology was the first method to provide unbiased whole transcriptome analysis with spatial information from tissue using barcoded array surfaces and has, since its initial publication, been used in multiple biological systems in health and disease. This presentation will cover the technology’s novel methodological and analytical aspects in the context of biological applications from cell atlas, neurology, and cancer.

Biosketch

Joakim Lundeberg, Ph.D., Professor in Molecular Biotechnology, was a co-founder of Science for Life Laboratory Sweden in 2010, a national and multi-university effort in large-scale life sciences providing access to infrastructures such as genomics, and proteomics, imaging, metabolomics, and drug development. Dr. Lundeberg has, during the most recent years, focused on spatial transcriptomics, which enables a detailed description of gene expression patterns in tissue sections. The methodology is now available worldwide through 10x Genomics Inc. The technology was also featured in Nature Methods as the Method of the Year 2020. Dr. Lundeberg has publications demonstrating technology development and examples of spatial analysis’s impact in biology. The current research focuses on expanding the spatial modalities and developing new software tools and applications in human cell atlas, neurology, and cancer.

Nicole Strittmatter

Nicole Strittmatter
Department of Bioscience, Technical University of Munich

Studying disease states in cancer and infection using spatial metabolomics

Mass Spectrometry Imaging (MSI) is a powerful technique to characterise complex biological samples such as tissues or plant material, enabling the mapping of hundreds of chemical constituents simultaneously. In the Strittmater lab, we are using MSI predominantly to map changes in the metabolome (spatial metabolomics) of biomedical specimen ranging from organoids to preclinical and clinical tissue specimen using Desorption Electrospray Ionisation (DESI) MSI, an ambient technique operating under atmospheric conditions and enabling analysis without prior sample preparation. This makes DESI-MSI particularly suited for deployment in multimodal imaging studies, such as in combination with imaging mass cytometry, which allows the targeted, multiplexed detection of proteins. In this talk, I will highlight some recent applications that cover some of our dominant research interests such as host-microbe interactions, tumour biology and anti-tumour drug disposition and metabolism.

Biosketch
Prof. Dr. Nicole Strittmatter is an expert in in situ mass spectrometry techniques, especially ambient mass spectrometry and imaging mass spectrometry. She has studied Chemistry at the Justus-Liebig University in Gießen, Germany, obtaining her MSc in 2011. She performed her PhD studies at the Department of Surgery and Cancer, Imperial College London, developing microbial identification tools using REIMS. Her postdoctoral years (2015-2021) were spent in industry, performing MS imaging studies at AstraZeneca, Cambridge, UK to study drug delivery and metabolism. Since 10.2021, she holds the assistant professorship of analytical chemistry (tenure track) at the Department of Biosciences, School of Natural Sciences, Technical University of Munich (TUM). Her current research focusses novel MS method development for spatial metabolomics and multimodal imaging in cancer, host-microbe interactions studies and beyond.

 

Title

Abstract 

Title

Abstract